(x+12)(x+6)=4x^2+36x

Simple and best practice solution for (x+12)(x+6)=4x^2+36x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+12)(x+6)=4x^2+36x equation:



(x+12)(x+6)=4x^2+36x
We move all terms to the left:
(x+12)(x+6)-(4x^2+36x)=0
We get rid of parentheses
-4x^2+(x+12)(x+6)-36x=0
We multiply parentheses ..
-4x^2+(+x^2+6x+12x+72)-36x=0
We get rid of parentheses
-4x^2+x^2+6x+12x-36x+72=0
We add all the numbers together, and all the variables
-3x^2-18x+72=0
a = -3; b = -18; c = +72;
Δ = b2-4ac
Δ = -182-4·(-3)·72
Δ = 1188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1188}=\sqrt{36*33}=\sqrt{36}*\sqrt{33}=6\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{33}}{2*-3}=\frac{18-6\sqrt{33}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{33}}{2*-3}=\frac{18+6\sqrt{33}}{-6} $

See similar equations:

| 1,000,000-0.7x=300,000 | | 5/6=2.5/c= | | 6-6(3x-2)=8 | | 2(x-2)=6x-3-4x | | 17x-3=29 | | 28x-1=79+9x-4 | | X+8+x+2x=40 | | -3x+6(5x-7)=-12 | | 9x+45=-x+135 | | 9x=2x+33 | | 9+45=-x+135 | | 5.4=0.03(x+8) | | f/2=2/8 | | 11x-3=2x+10+86 | | 49+53=8+6x | | -13=5(1+20m)-2m | | 3xx5=25 | | m/6=31 | | 9x=-2x+33 | | 12x-9-3x^2=0 | | 3(x+2)=-2=(3x-3) | | 9x+16=6x | | 2a+-4a=16 | | 3^{4x}+2=29 | | n+6/3=9 | | 3(w+3w)=-48 | | 3−4h=18 | | 2x-17=-(5x-2) | | 1,000,000-(0.7x)=300,000 | | n*n+n-300=0 | | 79=x+52 | | 9x-1=5x-101 |

Equations solver categories